VSKU105.., VSKV105.. Series

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Thyristor/Thyristor, 105 A

www.vishay.com

ADD-A-PAK

PRODUCT SUMMARY					
I _{T(AV)}	105 A				
Туре	Modules - Thyristor, Standard				

MECHANICAL DESCRIPTION

The ADD-A-PAK generation VII, new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- High voltage
- Industrial standard package
- UL approved file E78996
- · Low thermal resistance
- Designed and gualified for industrial level
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- · Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- High surge capability
- Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES	UNITS					
I _{T(AV)}	85 °C	105						
I _{T(RMS)}	I _{T(RMS)}		А					
1	50 Hz	2000						
ITSM	60 Hz	2094						
l ² t	50 Hz	20	kA ² s					
1-1	60 Hz	18.26	NA-2					
l²√t		200	kA²√s					
V _{RRM}	Range	400 to 1600	V					
T _{Stg}		-40 to 130	°C					
TJ		-40 to 130	°C					

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM,} I _{DRM} AT 130 °C mA			
	04	400	500	400				
VSK.105	08	800	900	800	15			
VSK.105 12		1200	1300	1200	15			
	16	1600	1700	1600				

ON-STATE CONDUCTION PARAMETER	SYMBOL	-		ONS	VALUES	UNITS
Maximum average on-state current	I _{T(AV)}		180° conduction, half sine wave,			A
Maximum anatinum DMC an atota aument		DC			165	
Maximum continuous RMS on-state current	I _{T(RMS)}	T _C			78	°C
		t = 10 ms	No voltage	Sinusoidal	2000	
Maximum peak, one-cycle non-repetitive	l-o.	t = 8.3 ms	reapplied	half wave,	2094	А
on-state current	I _{TSM}	t = 10 ms	100 % V _{RRM}	initial T _J =	1682	A
		t = 8.3 ms	reapplied	T _J maximum	1760	
Maximum I ² t for fusing		t = 10 ms	No voltage		20	1
	l ² t	t = 8.3 ms	reapplied	Initial T _J =	18.26	kA ² s
		t = 10 ms	100 % V _{RRM}	T _J maximum	14.14	KA-S
		t = 8.3 ms	reapplied		12.91	
Maximum I ² \sqrt{t} for fusing	l²√t (1)	t = 0.1 ms to 10 ms, no voltage reapplied $T_1 = T_1$ maximum			200	kA²√s
	N (2)	Low level (3)	·		0.98	
Maximum value of threshold voltage	V _{T(TO)} ⁽²⁾	High level ⁽⁴⁾	$T_J = T_J maxin$	num	1.12	V
Maximum value of on-state		Low level (3)			2.7	-
slope resistance	r _t ⁽²⁾	High level ⁽⁴⁾	$T_J = T_J maxin$	num	2.34	mΩ
Maximum on-state voltage drop	V _{TM}	$I_{TM} = \pi \times I_{T(AV)}$	T _J = 25 °C		1.8	V
Maximum non-repetitive rate of rise of turned on current	dl/dt	T_J = 25 °C, from 0.67 V _{DRM} , I _{TM} = π x I _{T(AV)} , I _g = 500 mA, t _r < 0.5 μs, t _p > 6 μs			150	A∕µs
Maximum holding current	I _H	$T_J = 25 \text{ °C}$, anode supply = 6 V, resistive load, gate open circuit			250	mA
Maximum latching current	١L	T _J = 25 °C, and	ode supply = 6 \	/, resistive load	400	1

Notes

⁽¹⁾ I²t for time $t_x = I^2 \sqrt{t} x \sqrt{t_x}$

(4) $I > \pi \times I_{AV}$

TRIGGERING							
PARAMETER	SYMBOL	TEST C	ONDITIONS	VALUES	UNITS		
Maximum peak gate power	P _{GM}			12	W		
Maximum average gate power	P _{G(AV)}			3.0	vv		
Maximum peak gate current	I _{GM}			3.0	А		
Maximum peak negative gate voltage	- V _{GM}			10			
	V _{GT}	T _J = - 40 °C		4.0	V		
Maximum gate voltage required to trigger		T _J = 25 °C	Anode supply = 6 V	2.5			
		T _J = 125 °C		1.7			
		T _J = - 40 °C		270	mA		
Maximum gate current required to trigger	I _{GT}	T _J = 25 °C	Anode supply = 6 V	150			
		T _J = 125 °C		80			
Maximum gate voltage that will not trigger	V _{GD}	T _J = 125 °C, rated V _{DRM} applied		0.25	V		
Maximum gate current that will not trigger	I _{GD}	$T_J = 125 \text{ °C}, \text{ rated } V_D$	6	mA			

BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM}	I _{RRM,} I _{DRM}	T _J = 130 °C, gate open circuit	20	mA				
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V				
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = 130$ °C, linear to 0.67 V_{DRM}	1000	V/µs				

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Junction operating and storage temperature range		T _J , T _{Stg}		-40 to 130	°C		
Maximum internal thermal resistance, junction to case per leg		R _{thJC}	DC operation	0.22			
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.1	°C/W		
Mounting torque ± 10 %	to heatsink		A mounting compound is recommended and the torque should be rechecked after a period of	4	Nm		
	busbar		3 hours to allow for the spread of the compound.	3	INITI		
Approximate weight				75	g		
				2.7	oz.		
Case style			JEDEC®	AAP GEN VI	(TO-240AA)		

DEVICES	SINE HALF WAVE CONDUCTION					RECTANGULAR WAVE CONDUCTION					
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30 °	
VSK.105	0.04	0.048	0.063	0.085	0.125	0.033	0.052	0.067	0.088	0.127	°C/W

Note

- Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Revision: 14-Jan-14

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

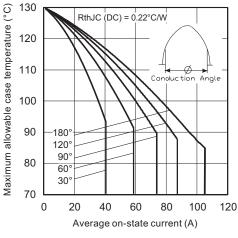
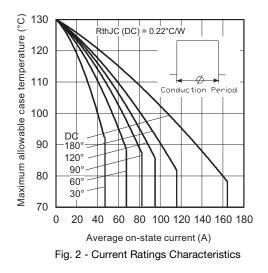



Fig. 1 - Current Ratings Characteristics

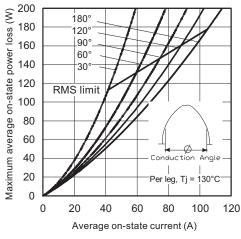


Fig. 3 - On-State Power Loss Characteristics

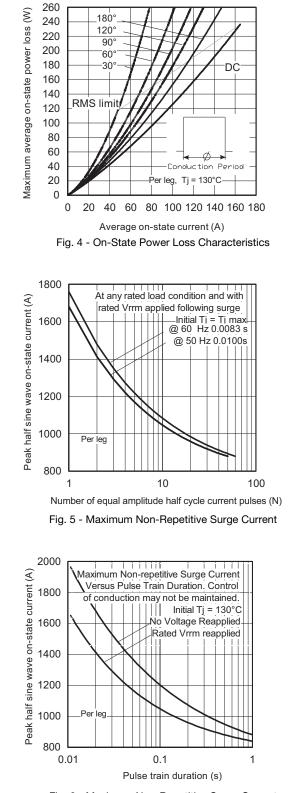
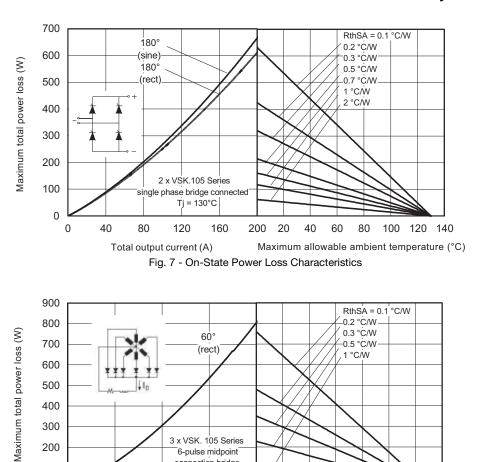


Fig. 6 - Maximum Non-Repetitive Surge Current

Revision: 14-Jan-14


4

Document Number: 94656

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VSKU105.., VSKV105.. Series

Vishay Semiconductors

www.vishay.com

200

100


0

0

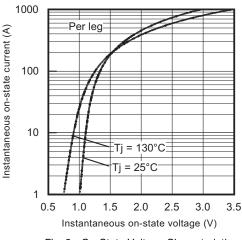
100

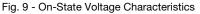
200

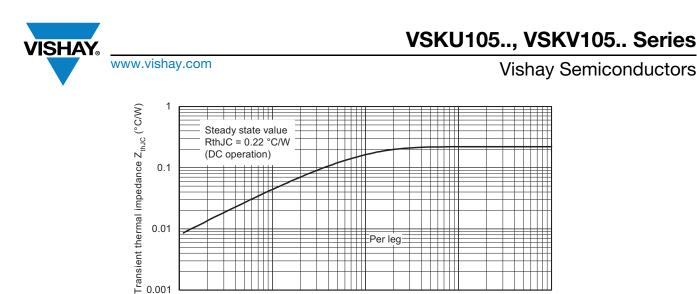
Total output current (A)

400 20 40 60 80

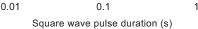
Maximum allowable ambient temperature (°C)


100 120 140


3 x VSK. 105 Series


6-pulse midpoint connection bridge

Tj = 125°C


300

0.01

1

10

Fig. 10 - Thermal Impedance Z_{thJC} Characteristics

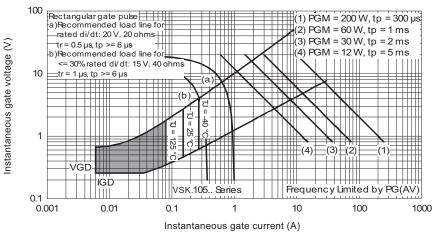
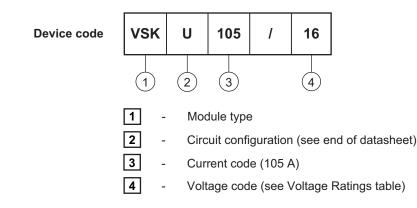



Fig. 11 - Gate Characteristics

ORDERING INFORMATION TABLE

0.001

Note

To order the optional hardware go to <u>www.vishay.com/doc?95172</u>

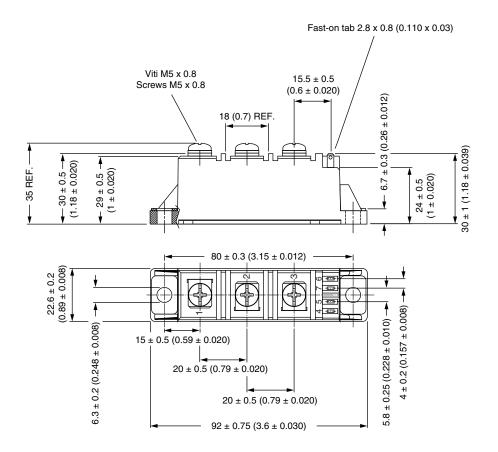
Revision: 14-Jan-14

6

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

VSKU105.., VSKV105.. Series

Vishay Semiconductors


CIRCUIT CONFIGURATION	CIRCUIT CONFIGURATION								
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CO	DE CIRCUIT DRAWING							
Two SCRs common cathodes	U	VSKU 1 1 1 1 1 1 1 1 1 1 1 1 1							
Two SCRs common anodes	V	VSKV (1) $1 \oplus 2$ 45 76 $(3) \odot$ $(3) \odot$							
	LINKS TO RELATE	D DOCUMENTS							
Dimensions		www.vishay.com/doc?95368							

Revision: 14-Jan-14 7 Document Number: 94656 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

ADD-A-PAK Generation VII - Thyristor

DIMENSIONS in millimeters (inches)

SHA

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

<u>VSKU105/12P</u> <u>VSKU105/08P</u> <u>VSKV105/12P</u> <u>VSKV105/08P</u> <u>VSKU105/04P</u> <u>VS-VSKV105/12</u> <u>VS-VSKV105/08</u> <u>VS-VSKU105/04</u> <u>VS-VSKU105/04</u> <u>VS-VSKU105/08</u>